虽然传统的排名系统仅关注最大化排名项目的效用,但公平感知的排名系统另外尝试平衡不同保护属性(如性别或种族)的曝光。为了实现这种类型的排名,我们基于分布鲁棒性的第一个原则推导出新的排名系统。我们在选择分布的球员之间制定最小的游戏,以最大限度地提高实用程序,同时满足公平的限制,针对对攻击性匹配统计训练数据的统计数据来最小化实用性。我们表明,我们的方法提供比现有基线方法高度公平的排名更好的效用。
translated by 谷歌翻译
In addition to its public health crisis, COVID-19 pandemic has led to the shutdown and closure of workplaces with an estimated total cost of more than $16 trillion. Given the long hours an average person spends in buildings and indoor environments, this research article proposes data-driven control strategies to design optimal indoor airflow to minimize the exposure of occupants to viral pathogens in built environments. A general control framework is put forward for designing an optimal velocity field and proximal policy optimization, a reinforcement learning algorithm is employed to solve the control problem in a data-driven fashion. The same framework is used for optimal placement of disinfectants to neutralize the viral pathogens as an alternative to the airflow design when the latter is practically infeasible or hard to implement. We show, via simulation experiments, that the control agent learns the optimal policy in both scenarios within a reasonable time. The proposed data-driven control framework in this study will have significant societal and economic benefits by setting the foundation for an improved methodology in designing case-specific infection control guidelines that can be realized by affordable ventilation devices and disinfectants.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Aiming at highly accurate object detection for connected and automated vehicles (CAVs), this paper presents a Deep Neural Network based 3D object detection model that leverages a three-stage feature extractor by developing a novel LIDAR-Camera fusion scheme. The proposed feature extractor extracts high-level features from two input sensory modalities and recovers the important features discarded during the convolutional process. The novel fusion scheme effectively fuses features across sensory modalities and convolutional layers to find the best representative global features. The fused features are shared by a two-stage network: the region proposal network (RPN) and the detection head (DH). The RPN generates high-recall proposals, and the DH produces final detection results. The experimental results show the proposed model outperforms more recent research on the KITTI 2D and 3D detection benchmark, particularly for distant and highly occluded instances.
translated by 谷歌翻译
Computer vision and machine learning are playing an increasingly important role in computer-assisted diagnosis; however, the application of deep learning to medical imaging has challenges in data availability and data imbalance, and it is especially important that models for medical imaging are built to be trustworthy. Therefore, we propose TRUDLMIA, a trustworthy deep learning framework for medical image analysis, which adopts a modular design, leverages self-supervised pre-training, and utilizes a novel surrogate loss function. Experimental evaluations indicate that models generated from the framework are both trustworthy and high-performing. It is anticipated that the framework will support researchers and clinicians in advancing the use of deep learning for dealing with public health crises including COVID-19.
translated by 谷歌翻译
With the wide-spread application of machine learning models, it has become critical to study the potential data leakage of models trained on sensitive data. Recently, various membership inference (MI) attacks are proposed that determines if a sample was part of the training set or not. Although the first generation of MI attacks has been proven to be ineffective in practice, a few recent studies proposed practical MI attacks that achieve reasonable true positive rate at low false positive rate. The question is whether these attacks can be reliably used in practice. We showcase a practical application of membership inference attacks where it is used by an auditor (investigator) to prove to a judge/jury that an auditee unlawfully used sensitive data during training. Then, we show that the auditee can provide a dataset (with potentially unlimited number of samples) to a judge where MI attacks catastrophically fail. Hence, the auditee challenges the credibility of the auditor and can get the case dismissed. More importantly, we show that the auditee does not need to know anything about the MI attack neither a query access to it. In other words, all currently SOTA MI attacks in literature suffer from the same issue. Through comprehensive experimental evaluation, we show that our algorithms can increase the false positive rate from ten to thousands times larger than what auditor claim to the judge. Lastly, we argue that the implication of our algorithms is beyond discredibility: Current membership inference attacks can identify the memorized subpopulations, but they cannot reliably identify which exact sample in the subpopulation was used during training.
translated by 谷歌翻译
Existing statistical methods can be used to estimate a policy, or a mapping from covariates to decisions, which can then instruct decision makers. There is great interest in using such data-driven policies in healthcare. In healthcare, however, it is often important to explain to the healthcare provider, and to the patient, how a new policy differs from the current standard of care. This end is facilitated if one can pinpoint the aspects (i.e., parameters) of the policy that change most when moving from the standard of care to the new, suggested policy. To this end, we adapt ideas from Trust Region Policy Optimization. In our work, however, unlike in Trust Region Policy Optimization, the difference between the suggested policy and standard of care is required to be sparse, aiding with interpretability. In particular, we trade off between maximizing expected reward and minimizing the $L_1$ norm divergence between the parameters of the two policies. This yields "relative sparsity," where, as a function of a tuning parameter, $\lambda$, we can approximately control the number of parameters in our suggested policy that differ from their counterparts in the standard of care. We develop our methodology for the observational data setting. We propose a problem-specific criterion for selecting $\lambda$, perform simulations, and illustrate our method with a real, observational healthcare dataset, deriving a policy that is easy to explain in the context of the current standard of care. Our work promotes the adoption of data-driven decision aids, which have great potential to improve health outcomes.
translated by 谷歌翻译
Considering the spectral properties of images, we propose a new self-attention mechanism with highly reduced computational complexity, up to a linear rate. To better preserve edges while promoting similarity within objects, we propose individualized processes over different frequency bands. In particular, we study a case where the process is merely over low-frequency components. By ablation study, we show that low frequency self-attention can achieve very close or better performance relative to full frequency even without retraining the network. Accordingly, we design and embed novel plug-and-play modules to the head of a CNN network that we refer to as FsaNet. The frequency self-attention 1) takes low frequency coefficients as input, 2) can be mathematically equivalent to spatial domain self-attention with linear structures, 3) simplifies token mapping ($1\times1$ convolution) stage and token mixing stage simultaneously. We show that the frequency self-attention requires $87.29\% \sim 90.04\%$ less memory, $96.13\% \sim 98.07\%$ less FLOPs, and $97.56\% \sim 98.18\%$ in run time than the regular self-attention. Compared to other ResNet101-based self-attention networks, FsaNet achieves a new state-of-the-art result ($83.0\%$ mIoU) on Cityscape test dataset and competitive results on ADE20k and VOCaug.
translated by 谷歌翻译
由于临床实践所需的放射学报告和研究是在自由文本叙述中编写和存储的,因此很难提取相对信息进行进一步分析。在这种情况下,自然语言处理(NLP)技术可以促进自动信息提取和自由文本格式转换为结构化数据。近年来,基于深度学习(DL)的模型已适用于NLP实验,并具有令人鼓舞的结果。尽管基于人工神经网络(ANN)和卷积神经网络(CNN)的DL模型具有显着潜力,但这些模型仍面临临床实践中实施的一些局限性。变形金刚是另一种新的DL体系结构,已越来越多地用于改善流程。因此,在这项研究中,我们提出了一种基于变压器的细粒命名实体识别(NER)架构,以进行临床信息提取。我们以自由文本格式收集了88次腹部超声检查报告,并根据我们开发的信息架构进行了注释。文本到文本传输变压器模型(T5)和covive是T5模型的预训练域特异性适应性,用于微调来提取实体和关系,并将输入转换为结构化的格式。我们在这项研究中基于变压器的模型优于先前应用的方法,例如基于Rouge-1,Rouge-2,Rouge-L和BLEU分别为0.816、0.668、0.528和0.743的ANN和CNN模型,同时提供了一个分数可解释的结构化报告。
translated by 谷歌翻译
对比度学习是视觉表示学习最成功的方法之一,可以通过在学习的表示上共同执行聚类来进一步提高其性能。但是,现有的联合聚类和对比度学习的方法在长尾数据分布上表现不佳,因为多数班级压倒了少数群体的损失,从而阻止了学习有意义的表示形式。由此激励,我们通过适应偏见的对比损失,以避免群集中的少数群体类别的不平衡数据集来开发一种新颖的联合聚类和对比度学习框架。我们表明,我们提出的修改后的对比损失和分歧聚类损失可改善多个数据集和学习任务的性能。源代码可从https://anonymon.4open.science/r/ssl-debiased-clustering获得
translated by 谷歌翻译